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ABSTRACT. This note compares turtle geometry and Euclidean geometry with respect to 
their treatment of similarity and difference of plane figures. It is observed that while the 
Euclidean notion of congruence faithfully captures a common perception of "sameness", the 
turtle expression of this idea is too weak. To deal with this insufficiency we add a new turtle 
operation, FLIP, which turns the turtle upside down. This brings the turtle's power to express 
invariance of shape up to Euclid's. 

The problem and its solution are viewed briefly from the perspectives of mathematics, 
computer science and education. The mathematical discussion compares the turtle group and 
the Euclidean group. The computational discussion focuses on the issue of "expressive power" 
of a language and how it may be enhanced. The educational discussion suggests a classroom 
implementation of the above ideas. 

I N T R O D U C T I O N  

This note compares turtle geometry and Euclidean geometry with respect 
to their treatment of similarity and difference of plane figures. It is 
observed that while the Euclidean notion of congruence faithfully captures 
a common perception of "sameness", the turtle expression of this idea is 
too weak. To deal with this insufficiency we add a new turtle operation, 
FLIP, which turns the turtle upside down. 2 This brings the turtle's power 
to express invariance of shape up to Euclid's. 

On a more sophisticated level, our solution is viewed from two comple- 
mentary perspectives. From the perspective of higher mathematics, the 
addition of FLIP is viewed as enlarging the pool of available turtle 
operations. Formally, it is an extension of the turtle group (the group of 
turtle operations) to one that is isomorphic to the Euclidean group (the 
group of plane isometries). This is related to Klein's Erlanger Program, in 
which various geometries are classified via groups of transformations and 
their invariants. 

From the computer science perspective, this problem reflects an insuffi- 
ciency of the turtle language. The addition of the new command FLIP is seen 
here as enhancing the expressive power of the language, so that it may 
faithfully capture our notion of invariance of shape. This represents an 
important trend in modern computer science (Abelson and Sussman, 1985): 
rather than lowering our descriptions down to the limitations of a given 
programming language (in effect, using various programming tricks), we 
strive to enrich the language till its expressive power is up to the given task. 
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Finally, we describe a classroom implementation of  the foregoing ideas. 
It is based on an activity which is simple enough to suit virtually all ages, 
hut at the same time is sophisticated enough to demonstrate the above- 
mentioned insufficiency of turtle geometry. The proposed enhancement to 
the turtle language can then lead, depending on the level and interests of  
the students, to discussions of geometry, transformations, groups, pro- 
gramming languages and issues of  style in programming and problem 
solving. 

THE HILBERT CURVE 

We begin by considering a turtle description of the well-known Hilbert 
curve, as given in Abelson and diSessa (1981, pp. 96-98). 

Fig. 1. The Hilbert curve. 

Their first version is composed of two "mirror"  procedures, LHILBERT 
and RHILBERT that recursively call themselves and each other. 

TO LHILBERT :SIZE :LEVEL 
IF :LEVEL = 0 [STOP] 

LT 90 
RHILBERT :SIZE :LEVEL-1 
FD :SIZE 
RT 90 
LHILBERT :SIZE :LEVEL-1 
FD :SIZE 
LHILBERT :SIZE :LEVEL-1 
RT 90 
FD :SIZE 
RHILBERT :SIZE :LEVEL-1 
LT 90 

END 

TO RHILBERT :SIZE :LEVEL 
IF :LEVEL = 0 [STOP] 
RT 90 
LHILBERT :SIZE :LEVEL-1 
FD :SIZE 
LT 90 
RHILBERT :SIZE :LEVEL-1 
FD :SIZE 
RHILBERT :SIZE :LEVEL-1 
LT 90 
FD :SIZE 
LHILBERT :SIZE :LEVEL-1 
RT 90 

END 
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Their second, more elegant, version takes advantage of the similarity 
between LHI LBERT and RHILBERT,  uniting them into a single proce- 
dure. This elegance, however, is achieved at the cost of  introducing a 
rather unnatural programming trick, namely an additional variable called 
PARITY that takes on the values 1 and - 1 and, accordingly, keeps or reverses 

directions. 

TO HILBERT :SIZE :LEVEL :PARITY 
IF :LEVEL = 0 [STOP] 
LT 90 �9 :PARITY 
HILBERT :SIZE :LEVEL-1 - :PARITY 
FD :SIZE 
RT 90 �9 :PARITY 

HILBERT :SIZE :LEVEL-1 :PARITY 
FD :SIZE 
HILBERT :SIZE :LEVEL-1 :PARITY 
RT 90 �9 :PARITY 
FD :SIZE 
HILBERT :SIZE :LEVEL-1 -:PARITY 
LT 90 �9 :PARITY 

END 

THE PROBLEM: CAPTURING SAMENESS 

In Euclidean geometry, the idea of "sameness" in regard to plane figures is 
represented faithfully by the notion of  congruence: congruent figures usu- 
ally fit our perception of "same figure, differently placed". In terms of 
transformation geometry, congruence is effected by an isometry of the 
plane: two figures are congruent if and only if they can be brought to 
overlap by an isometry, that is, a combination of translations, rotations 
and line-reflections. In turtle geometry, the same notion of "same figures, 
differently placed" can be given a procedural representation: If  two figures 
are "the same" they ought to be describable by a single turtle procedure (a 
combination of FORWARDs and RIGHTs).  The two figures in question 
could then be drawn by the same procedure, varying only the initial turtle 

state i.e., its position and heading? 
As the Hilbert Curve example demonstrates, however, this is not always 

the case: two different procedures, RHIL BERT and LHILBERT,  are 
needed in turtle geometry in order to describe congruent mirror shapes. In 
practice one can of course solve the problem by using programming tricks 
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such as the P A R I T Y  variable above, but this only highlights the insuffi- 

ciency of  the geometric means available. (See the Classroom Implementa-  

tion Section for a much simpler example demonstrating the same problem.) 

A SOLUTION 

We add a new turtle operation FLIP,  which turns the turtle upside down. 
Thus the effect of  FLIP  is to switch the turtle's left and right. We can also 

say that FLIP  changes the turtle state from "face down" to "face up"  and 

vice versa. 

"• FLIP / /~  

FLIP /~  

Fig. 2. The FLIP operation. 

For  a turtle living in the computer screen, "face down" actually means 
"face to the screen", so that the turtle's left is the same as the user's. On 
the other hand, when the turtle is in the "face up"  state, i.e. facing the user, 
its lefthand side coincides with the user's right. 

We now use FLIP  to give a third description to the Hilbert curve, which 
seems to us to represent more faithfully the geometrical relations involved. 
Instead of  distinguishing right from left, or introducing extraneous tricks, 
we observe that FLIP  L H I L B E R T  FLIP  has actually the same effect as 
RHILBERT.  Thus the basic similarity of  the two can be captured in our 
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enriched language as: 

TO H I L B E R T  :SIZE :LEVEL 

IF :LEVEL = 0 [STOP] 

LT 90 
F L I P  H I L B E R T  :SIZE :LEVEL-1 FLIP  

FD :SIZE 

RT 90 
H I L B E R T  :SIZE :LEVEL-1 

FD :SIZE 
H I L B E R T  :SIZE :LEVEL-1 

RT 90 

FD :SIZE 
FLIP  H I L B E R T  :SIZE :LEVEL-1 F L I P  

LT 90 
E N D  

NOTE ON FORMALITY 

We have adopted the same informal, anthropomorphic approach in intro- 

ducing the new turtle operation FLIP,  as is customary in the Logo 
literature. However, this is easily formalizable by considering turtle opera- 

tions to be transformations of  the "turtle plane" - the set of  all turtle 

states (x, y, h , f ) .  Here x and y are the turtle's coordinates, h its heading 

and f its face-state, which can assume the values "up"  or "down".  FLIP  is 

now defined as the operation that changes the value of f from "up"  to 
"down"  and vice versa, leaving the other components of  the state un- 

changed. 

THE TURTLE GROUP: A VIEW FROM HIGHER MATHEMATICS 

According to Klein's "Erlanger Program" geometries are classified via 

groups of transformations and their invariants. Thus Euclidean (plane) 

geometry is characterized by the group Of all plane isometries - combina- 
tions of  translations, rotations and line-reflections - which we shall call the 

Euclidean group. Similarly, turtle geometry is characterized by the group of 
all turtle operations - combinations of  F O R W A R D s  and R I G H T s  - 
which we shall call the turtle group. From our discussion of turtle represen- 
tations of  the Hilbert curve, one suspects that the turtle group is in some 
sense "smaller" than the Euclidean group. Indeed, it can be shown (Leron 
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and Zazkis, in press) that the turtle group is isomorphic to the subgroup of 
direct isometries, i.e. combinations of translations and rotations (no reflec- 
tions). However, the extended turtle group, with FLIP adjoined, is isomor- 
phic to the entire Euclidean group. This is what we meant by saying in the 
introduction that FLIP brings the turtle's power to express invariance up to 
Euclid's. 

In our isomorphism, incidentally, RIGHTs correspond to rotations 
about the origin, FORWARDs correspond to translations along the y-axis, 
and FLIP corresponds to reflection in the y-axis. Translations in general 
correspond to "heading-preserving" turtle operations, i.e. operations of the 

form ( R I G H T  a FORWARD b R I G H T  -a). Similarly, general rotations 
and reflections correspond to suitable conjugates of  the R I G H T  and FLIP 
operations. 

EXPRESSIVE POWER: A VIEW FROM COMPUTER SCIENCE 

From a computer science perspective, the significance of our FLIP lies mainly 
in its linguistic aspects. Whereas the mathematical significance was seen to 
lie in the extension of the group of turtle operations to achieve greater range 
of invariance, here we are more concerned with the extension of the language 
to achieve greater expressive power. It should be emphasized that this does 
not mean that things can now be expressed that couldn't before. What is 
meant, rather, is that things can be better expressed than before, in the sense 
that we can express them in the simplest and most natural language for the 
given context. Unlike mathematics, where one is free to choose one's language 
to suit one's purpose, in computer science, unless special care is taken, one 
is often forced to distort one's perceptions to suit a given "general purpose" 
programming language. (Cf. the wide-ranging discussion of expressive power 
and abstraction in Abelson and Sussman (1985).) In this sense, the addition 
of FLIP enables us to better express invariance of shape in the turtle language, 
thus increasing its expressive power. 

FLAGS AND BOARDS: A CLASSROOM IMPLEMENTATION 

The following is a brief description of a classroom activity based on the above 
ideas, that we have actually carried out, in one form or another, with many 
groups of students ranging from elementary school to college. 

(a) Similarities and differences. The activity, which is based on small-group 
work alternating with classroom discussion, starts with the follow- 
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Fig. 3. Congruent boards. 

ing question: What is similar and what is different about the patterns in 
Figure 3? 

The students' work (with suitable help from the teacher) eventually 
crystallizes into three types of answers, depending on the language of 
description. 

Using natural language, one may say that all the patterns are composed 
of two similar "boards", but the relative situation of the two boards in 
each pair is different. 

Mathematically, each pair consists of two congruent shapes, but the 
transformation carrying one to the other (whose existence is guaranteed by 
the congruence) is different. 

The third kind of description is a procedural one. Here we specify how to 
draw the given pattern, rather than what is its structure. For example, here 
is one possible description using Logo: 

TO BOARDS1 TO BOARDS2 TO BOARDS3 
BOARD BOARD BOARD 
MOVE1 MOVE2 MOVE3 
BOARD BOARD BOARD 

END END END 

In this description, the mathematical fact that all the boards are 
congruent is expressed by the computational fact that the same subproce- 
dure BOARD is used to draw all of them. In addition, the similarity in 
form of the three procedures (BOARD MOVE BOARD) reflects the 
similar structure of the three figures. In contrast, the different relative 
situation of the two boards in each pair is expressed by the three different 
MOVEs. 

(b) A problem. The class is next given a slight variation of the above 
patterns (Figure 4), and the same question is repeated concerning their 
similarities and differences. 
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Fig. 4. Congruent flags. 

Since the two figures look rather alike, we may expect the same analysis 
of similarity and difference to hold. In particular, we might expect our 
turtle description to have the following form: 

TO FLAGS1 TO FLAGS2 TO FLAGS3 
FLAG FLAG FLAG 
MOVE1 MOVE2 MOVE3 
FLAG FLAG FLAG 

END END END 

To our surprise, we find that while the descriptions in the first two modes 
(natural language and mathematics) indeed remain the same, the expected 
turtle description doesn't quite work. Indeed, we need two different FLAG 
procedures (e.g. RIGHT.FLAG and LEFT.FLAG) to complete FLAGS3. 
Why is it that the two congruent shapes cannot be described by the same 
procedure? 

This seemingly innocent problem may then lead to a discussion of direct 
and indirect isometries, the insufficiency of the turtle language in dealing 
with the latter, and the possibility of extending the turtle language by 
adding the new FLIP operation. 

With this addition to the language, the procedure FLAG3 as defined 
above will indeed draw the third pair of flags in Figure 4, provided the 
subprocedure MOVE3 is defined as follows. 

TO MOVE3 
RIGHT 45 
FLIP 

END 

On a more sophisticated level, our problem can lead to discussion of the 
turtle group and its relation to the Euclidean group, of Klein's Erlanger 
Program, and of abstraction as a means for extending the expressive power 
of the language. 
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Fig. 5. A butterfly. 

(c) Another example. To wrap up the activity, additional problems involv- 
ing FLIP may be considered. For example, suppose we wish to draw the 
"butterfly" described in Figure 5. 

A natural way to describe the butterfly is as composed of  a body, two 
similar pairs of wings and two similar sensors. Since the two "similar" 
wings, as well as the sensors, are mirror images of each other, our new 
FLIP command enables us to translate this description directly into a Logo 
procedure of the form: 

TO B U T T E R F L Y  
BODY 
WING FLIP W I N G  
SENSOR FLIP SENSOR 

END 

NOTES ON IMPLEMENTATION 

In order to be able to experiment with the enriched turtle language, a 
computer simulation may be desirable. Thus, although our main concern in 
this article is with conceptual aspects of  FLIP, we add a few remarks 
concerning its actual implementation in Logo. Perhaps the simplest way to 
achieve this is to enter in Logo any standard simulation of 3-D turtle (e.g. 
Abelson and diSessa (1981, pp. 144 ft.)), define FLIP as ROLL 180, 
redefine R I G H T  as YAW, and ignore PITCH and TRAVEL. 

Another way of  implementing FLIP is via a suitable redefinition of  
LEFT and RIGHT.  (Most current versions of  Logo allow redefinition of 
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primitives. Alternatively, one can simply define NEW.RT and NEW.LT 

and ignore the old RT and LT.) The idea is to keep track of  the current 
"flip-state" of  the turtle, e.g. in a global variable, and to define FLIP  as a 

procedure that switches the flip-state from "face down" to "face up" and 
vice versa. The new LEFT will act as the old LEFT when the face is down 
and as the old R I G H T  when the face is up. The new R I G H T  is defined 

similarly. 

C O N C L U S I O N  

The need for the new turtle operation FLIP  arose from the comparison of 
Euclidean and turtle geometries. Once defined, we have examined the new 

operation in three contexts: mathematical,  where it was seen as an exten- 
sion of the turtle group to one isomorphic to the Euclidean group; 

computational,  where it was seen as an extension of the turtle language to 

enhance its expressive power; and educational, where it served as a basis 
for classroom activities that could lead to all the above themes in an 

elementary context. 
Typically, it was not FLIP  itself that has been the center of  interest, but 

the sort of  general concepts and structures that could be invoked with it. In 

particular we saw how FLIP  could become a "thinking tool" which 

enabled us to break away from the constraints inherent in any given 
programming language. 

NOTES 

1 Present address: Department of Mathematical Sciences, Northern Illinois University, 
DeKalb, IL 60115, USA. 
2 Throughout this note we use "turtle operation" in its mathematical, rather than computa- 
tional sense. That is, operation as transformation or mapping, rather than a procedure that 
outputs a computational object. For example, FORWARD 50 is a turtle operation in this 
sense. 
3 By "the same" we also mean the same size. In order to treat the relation "same shape except 
for size", we need to replace congruence with similarity in the Euclidean case, and allow the 
SIZE variable to vary in turtle procedures. 
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